Tag Archives: mini screw

China manufacturer Dom Mini Screw Conveyor for Silo Cement with Great quality

Product Description

Dom Mini Screw Conveyor for Silo Cement

1.Product Details

 

1.Advantages Of Screw Conveyor:

 

1.Using high quality steel pipe, the overall rigidity is good.
2.Double pitch blade to reduce the degree of compression in material transportation .
3.It adopts high-quality reducer and heavy-duty design. It has the characteristics of large turning distance and low noise.
4.Universal ball connection is optional to facilitate installation, adjustment and steeling.
5.Equipped with medium suspension bearings and tail bearings of good quality, and easy to install.
6.Adequate spare parts, complete specifications.
7.Commonly used diameter 165,219,273,323,407 large stock,size and angle can be customized according to customer requirements.
8.Standard components, easy to transport.
9.One-time forming of spiral blade,double pitch design ,never plugging.

 

1.Simple structure, good sealing, easy operation and low power invest cost. 
2.It has the features of small screw diameter, high rotation speed and large capacity, specially suitable for inclined transport. The angle is up to 60 degree. 
3.Widely used in chemical, metallurgy, paper making, and construction industries, etc. 
4.Axle head and conveying spiral adopt spline connection, with features of convenient mounting&disassembling, large load capacity and stability. 
5.All sections of screw conveyor are connected with flange. Also screw blades are integral connection. 
6.Inlet and outlet chutes have many kinds of connections, such as flange, sack, universal joint, etc.

Related Products

2.Our Company’s Product:

Reducer: an independent part composed of gear drive, worm drive and gear – worm drive enclosed in a rigid shell. It plays the role of matching speed and transferring torque between prime mover and working machine or actuator. It is a kind of relatively precise machinery. The purpose of using it is to reduce the speed and increase the torque. 

Shaft-end Seal: With multi-shaft-end seal in shaft end and avoids cement&mud approaching to shaft end to extend service life of the concrete mixer.
Discharging Device: Hydralic discharging system,with strong drive force and reliable discharging.Discharging door can be opened at any angle,with manual discharging function.The discharging door adopts detachable structure which is convenient for maint.

Shaft end seal:Separate seal and bearing, more stable operation, better maintenance, easy replacement, and maintenance;
Discharge mechanism:unloading door is made by tooling and then processed by lathe to eliminate the phenomenon of Carmen; Hydraulic discharge, stable operation.

 

 

2.Company Profile

MAHangZhou CZPT METALLURGICAL MACHINE CO.,LTD. is located in the famous steel city HangZhou City, rich iron and steel resources for the development of my company provides a unique advantage, the company is the production and research of various wear-resistant, heat-resistant, shock-resistant alloy castings professional manufacturers; business is characterized by fine, special, unique. Products to the market economy needs throughout the country, each year more than 5,000 tons of various casting products in metallurgical machinery, construction, cement, transportation and other industries widely used. This product its unique properties of various materials to resist wear and tear on the product, as many national key projects of qualified suppliers.

3.Packaging & Delivery

Quick delivery and high efficiency.
Use reinforced packaging for important electronic accessories and wearing parts.
We will carefully calculate the type of space and cabinet needed to minimize the cost to buyers and help them save money.
Port: HangZhou, ZheJiang , ZheJiang , HangZhou, HangZhou

4.Service

Technical files service provided.
Spare parts replacement and repair service provided.
Our Products can be customized according to clients’ different requirement.
Technical support online service provided.

5.After-sale Service

May enjoy the life-long service and technical consultation after you buy our products.
Certain quantity stochastic tool will be provided while delivering goods.
Within 48 hours service will be available according to different regions after received the telephone.
The time of warranty is for a whole year
Promptly provides the fittings according to users’ demands, handles for the user consigns for shipment.
Provides the technology advisory service as necessary.
Please contact me when you have any problems with the plant.

6.Contact

 

 

 

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When 2 splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by 5 mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to 50-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows 4 concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these 3 components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using 2 different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these 2 methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the 3 factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China manufacturer Dom Mini Screw Conveyor for Silo Cement     with Great qualityChina manufacturer Dom Mini Screw Conveyor for Silo Cement     with Great quality