Tag Archives: gearbox parts

China manufacturer Wholesale FAW, HOWO, Gearbox Parts Clutch Disc with Good quality

Product Description

Big Clutch Disc For Heavy Duty Trucks

Product Name: Clutch disc
size: OEM Standard size
Material: Environmental protection and non-asbestos
Quality: 100% Professional Test
Application: Truck Brake System
MOQ: 1piece
Delivery time: 3-25 DAYS 
Packing: Carton, wooden box or according to customer requirements
trucks:  HOWO, T5G, GENLYON, F3000, Beiben,Red Rock,Auman,FAW Xihu (West Lake) Dis.,Xihu (West Lake) Dis.feng CZPT flagship,Steyr,ZheJiang Automobile,Sinotruk T7,Xihu (West Lake) Dis.feng Renault,Liberation of Aowei……

 

Selling point of a product

1.The specially designed wave spring prolongs the clutch engagement time, starts more smoothly, and makes the torque and speed transfer more evenly between the transmission and the engine.

2. It is made of original standard special friction materials, which can withstand harsh environments and ensure service life.

3.The standard spline is processed strictly in accordance with the OE parameter standard

Our Advantages

 

Advantage
1.Quickly quotation and sufficient inventory 
2.Flexible packages and delivery methods
3. Reply your enquiry in 24 hours.
4.OEM, buyer design, buyer label services provided.
5. Exclusive and unique solution can be provide to our customer by our well-trained and professional engineers and staffs.

OEM service
1. OEM Manufacturing welcome: Product, Package… 
2. Sample order 
3. We will reply you for your inquiry in 24 hours.
4. after sending, we will track the products for you once every 2 days, until you get the products. When you got the 
goods, test them, and give me a feedback.If you have any questions about the problem, contact with us, we will offer
the solve way for you.

Production Process

Production workshop

HangZhou EAST WORLD INTERNATIONAL TRADE Co., Ltd is a professional heavy duty truck and light truck spare parts supplier in China. All staffs have over 10-years experience on truck parts industry and cooperation with oversea companies many years make us professional in international trade. 
We fouces on poviding high quality spare parts for CZPT HOWO, XIHU (WEST LAKE) DIS.N, SAIC-Iveco, GENLYON, SHACMAN, CZPT AUMAN, YUXIHU (WEST LAKE) DIS., CZPT YUXIHU (WEST LAKE) DIS., JAC parts and SHXIHU (WEST LAKE) DIS.I, LINGONG, LIUGONG, XGMA construction parts.
Light truck parts include: Haowei light truck, Xihu (West Lake) Dis.feng light truck, CZPT light truck, JAC, light truck, Yuejin light truck.
We are the first-class distributor of CYPR piston rings, Qinyan brake pads and Jiu Rubber products. And we have close cooperation with clutch disc factory, bolt factory and shock absorber factory. These factories can provide stable and high-quality products for long-term cooperation.
Our employees have more than 10 years of experience in the truck parts industry and export business.

At present, our products have been exported to Africa, Ethiopia, Ghana, Congo, Southeast Asia, Russia, Middle East Peru. Our customers have established long-term cooperative relations with us and place orders with our company every year.
Covered engine parts , chassis parts, body parts, clutch parts, brake parts, gearbox parts, axle parts. 

Sample display

Packaging & Shipping

1.Flexible packaging and delivery
2.Flexible payment method and short delivery time
3.Professional pre-sales and after-sales service
4.Professional export declaration service

FAQ

Q1: Are you trading company or manufacturer ?
A1: We are trading company with its own and cooperative factories .

Q2:Can we buy 1 pc of each item for quality testing?
A2: Yes, we are glad to accept trial order or samples for quality testing.

Q3: How long is your delivery time?
A3: It’s about 1 to 5 days for the goodsin stock.In case of no storages,1 week or 1 month required for the goods to be produced as your order.

Q4: What’s your warranty ?
A4: we promise half a year quality guarantee for some of our products.

Q5: What is your terms of payment ?
A5: We accept  L/C,T/T, Western union,etc.

 

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When 2 splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by 5 mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to 50-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows 4 concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these 3 components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using 2 different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these 2 methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the 3 factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China manufacturer Wholesale FAW, HOWO, Gearbox Parts Clutch Disc     with Good qualityChina manufacturer Wholesale FAW, HOWO, Gearbox Parts Clutch Disc     with Good quality

China high quality Made in China FAW, HOWO, Gearbox Parts Clutch Disc with Best Sales

Product Description

Big Clutch Disc For Heavy Duty Trucks

Product Name: Clutch disc
size: OEM Standard size
Material: Environmental protection and non-asbestos
Quality: 100% Professional Test
Application: Truck Brake System
MOQ: 1piece
Delivery time: 3-25 DAYS 
Packing: Carton, wooden box or according to customer requirements
trucks:  HOWO, T5G, GENLYON, F3000, Beiben,Red Rock,Auman,FAW Xihu (West Lake) Dis.,Xihu (West Lake) Dis.feng CZPT flagship,Steyr,ZheJiang Automobile,Sinotruk T7,Xihu (West Lake) Dis.feng Renault,Liberation of Aowei……

 

Selling point of a product

1.The specially designed wave spring prolongs the clutch engagement time, starts more smoothly, and makes the torque and speed transfer more evenly between the transmission and the engine.

2. It is made of original standard special friction materials, which can withstand harsh environments and ensure service life.

3.The standard spline is processed strictly in accordance with the OE parameter standard

Our Advantages

 

Advantage
1.Quickly quotation and sufficient inventory 
2.Flexible packages and delivery methods
3. Reply your enquiry in 24 hours.
4.OEM, buyer design, buyer label services provided.
5. Exclusive and unique solution can be provide to our customer by our well-trained and professional engineers and staffs.

OEM service
1. OEM Manufacturing welcome: Product, Package… 
2. Sample order 
3. We will reply you for your inquiry in 24 hours.
4. after sending, we will track the products for you once every 2 days, until you get the products. When you got the 
goods, test them, and give me a feedback.If you have any questions about the problem, contact with us, we will offer
the solve way for you.

Production Process

Production workshop

HangZhou EAST WORLD INTERNATIONAL TRADE Co., Ltd is a professional heavy duty truck and light truck spare parts supplier in China. All staffs have over 10-years experience on truck parts industry and cooperation with oversea companies many years make us professional in international trade. 
We fouces on poviding high quality spare parts for CZPT HOWO, XIHU (WEST LAKE) DIS.N, SAIC-Iveco, GENLYON, SHACMAN, CZPT AUMAN, YUXIHU (WEST LAKE) DIS., CZPT YUXIHU (WEST LAKE) DIS., JAC parts and SHXIHU (WEST LAKE) DIS.I, LINGONG, LIUGONG, XGMA construction parts.
Light truck parts include: Haowei light truck, Xihu (West Lake) Dis.feng light truck, CZPT light truck, JAC, light truck, Yuejin light truck.
We are the first-class distributor of CYPR piston rings, Qinyan brake pads and Jiu Rubber products. And we have close cooperation with clutch disc factory, bolt factory and shock absorber factory. These factories can provide stable and high-quality products for long-term cooperation.
Our employees have more than 10 years of experience in the truck parts industry and export business.

At present, our products have been exported to Africa, Ethiopia, Ghana, Congo, Southeast Asia, Russia, Middle East Peru. Our customers have established long-term cooperative relations with us and place orders with our company every year.
Covered engine parts , chassis parts, body parts, clutch parts, brake parts, gearbox parts, axle parts. 

Sample display

Packaging & Shipping

1.Flexible packaging and delivery
2.Flexible payment method and short delivery time
3.Professional pre-sales and after-sales service
4.Professional export declaration service

FAQ

Q1: Are you trading company or manufacturer ?
A1: We are trading company with its own and cooperative factories .

Q2:Can we buy 1 pc of each item for quality testing?
A2: Yes, we are glad to accept trial order or samples for quality testing.

Q3: How long is your delivery time?
A3: It’s about 1 to 5 days for the goodsin stock.In case of no storages,1 week or 1 month required for the goods to be produced as your order.

Q4: What’s your warranty ?
A4: we promise half a year quality guarantee for some of our products.

Q5: What is your terms of payment ?
A5: We accept  L/C,T/T, Western union,etc.

 

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China high quality Made in China FAW, HOWO, Gearbox Parts Clutch Disc     with Best SalesChina high quality Made in China FAW, HOWO, Gearbox Parts Clutch Disc     with Best Sales