China high quality Wheel Hub Bearing for Chevrolet Trailblazer 513188 near me factory

Product Description

Wheel Hub Bearing CHEVROLET TR

513188

 

513188
1513 0571
8-12413037-0
FW9188
BR93571
12413037

1. Product Description:
(1). Market type: After market
(2).Packaging Detail: Neutral packing or according to customer’s requirement brand color box.
(3)
Front Axle
Flange Diameter: 5.94 In.
Bolt Circle Diameter: 5.00 In.
Wheel Pilot Diameter: 3.06 In.
Brake Pilot Diameter: 3.11 In.
Flange Offset: 1.85 In.
Hub Pilot Diameter: 3.62 In.
Hub Bolt Circle Diameter: 4.75 In.
Bolt Size: M12X1.5
Bolt Quantity: 6
Bolt Hole MET: M12X1.75
Bolt Hole qty: 3
Flange Shape: TRIANGULAR
ABS Sensor: Has ABS with Integral Sensor
Number of Splines: 27

(4).Application:

Buick Rainier 2004-2007 
Chevrolet SSR 2003-2006 
Chevrolet Trailblazer 2002-2009 
GMC Envoy 2002-2009 
 

2. Products features:
(1). Made of high-quality GCR15 Chrome Steel.
(2). Perfect process, high reliability.
(3). Superior quality(ISO9001, TS16949 standard), long working life.
(4). OEM Service availble.

3, More types of  Chevrolet Wheel Hub Bearing we can provide: 

OEM REF / AMC  Model Product Name
1915571 VKBA7437 CHEVROLET  CAPTIVA (C100, C140) 2.0 D WHEEL HUB BEARING 
515054 BR93571 CHEVROLET  EXPRESS 1500  WHEEL HUB BEARING 
513237 22728987 CHEVROLET   HHR06-09 WHEEL HUB BEARING 
515058 FW338    CHEVROLET  AVALANCHE 2500 2002-2007 4WD WHEEL HUB BEARING 
541009 96471775 CHEVROLET AVEO BASE MODEL L4 1.6L  WHEEL HUB BEARING 
541571 959 0571 7 CHEVROLET AVEO BASE MODEL L4 1.6L  WHEEL HUB BEARING 
513200 BR930497 CHEVROLET BLAZER 1998-2005 RWD       GMC CZPT 1998-2001 RWD WHEEL HUB BEARING 
HA590262 FW356 CHEVROLET CAPTIVA (C100, C140) 2006–06- WHEEL HUB BEARING 
512247 BR930365 CHEVROLET COBAL 2007 4-Wheel ABS WHEEL HUB BEARING 
515111 8-15100-274-0 CHEVROLET COLORADO BASE MODEL L4 2.8L 2770CC–169CID VIN 8 2004  WHEEL HUB BEARING 
590061 15170661 CHEVROLET COLORADO BASE MODEL L4 2.8L 2770CC–169CID VIN 8 2004  WHEEL HUB BEARING 
513571 7466924 Chevrolet Corvette 1984-1996 WHEEL HUB BEARING 
13557128   CHEVROLET CRUZE (J300) 2009–05- WHEEL HUB BEARING 
512446 HA590403 CHEVROLET CRUZE ECO L4 1.4L 1364CC–83CID VIN 9 LUJ TURBO 2011  WHEEL HUB BEARING 
513315 1350571 CHEVROLET CRUZE ECO L4 1.4L 1364CC–83CID VIN 9 LUJ TURBO 2011  WHEEL HUB BEARING 
513250 96639585 CHEVROLET  EPICA, SUZUKI VERONA  C– ABS  2006-2004 Rueda Delantera WHEEL HUB BEARING 
BR93 0571 SP450703  CHEVROLET EXPRESS 1500  WHEEL HUB BEARING 
515059 BR93571 CHEVROLET EXPRESS  2500 2009  WHEEL HUB BEARING 
512315 12413223 CHEVROLET HHR 2006-2009 Non-ABS WHEEL HUB BEARING 
541005   CHEVROLET SILVERADO 1500  WHEEL HUB BEARING 
515071 BR93571 CHEVROLET  SILVERADO 1500 2005-2006  WHEEL HUB BEARING 
515099 15910969 CHEVROLET SILVERADO 3500 CLASSIC LS 2007 WHEEL HUB BEARING 
515041 FW741 CHEVROLET  TRUCK 96-00,Grand Blazer 96-99″”” WHEEL HUB BEARING 

4.About us :
We are specialize in manufacturing wide range of automotive wheel bearing, wheel hub bearing, wheel hub .
 
We have passed the evaluation of ISO9001:2000 , TS16949 Quality management system certification and we believe that quality and service is key to success .our company will always offer high quality products and satisfying after-sale servie to all our customers .
 We sincerely welcome your call and enquiry for cooperation !

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China high quality Wheel Hub Bearing for Chevrolet Trailblazer 513188     near me factory China high quality Wheel Hub Bearing for Chevrolet Trailblazer 513188     near me factory